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ABSTRACT

This paper characterizes those real-valued functions on a compact set K
in R™ that can be expressed as the pointwise limit of a sequence (hm),
where each function A, is harmonic on some neighbourhood of K. It also
characterizes those functions on the unit sphere that can arise as the ra-
dial limit function at infinity of an entire harmonic function. Both results
rely on important recent work of Luke§ et al. concerning approximation
of affine Baire-one functions.

1. Introduction

Let K be a compact set in Euclidean space R* (n > 2), and let H{K) denote the
collection of all functions that are harmonic on a neighbourhood of K. Further,
given z € K, let M, (K) denote the collection of all H({K)-representing measures
for x, that is, probability measures g on K satisfying

h(z) = / hdu  for every h € H(K).
K

The following corollary of a well-known result of Debiard and Gaveau (Theorem
1 of {5], formulated originally in terms of fine harmonicity) characterizes those
functions on K that are uniform limits of functions in H(K).
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THEOREM A: Let K be a compact subset of R* and f: K — R. The following
statements are equivalent:

(a) there is a sequence (hy,) in H(K') such that hy, — f uniformly on K;

(b) f € C(K) and

1) fx) = /fd/.t whenever x € K and y € M, (K).

The first main result of this paper establishes an analogue of this theorem
for pointwise convergence of harmonic functions. We recall that a real-valued
function f on a set A is called Baire-one if it is the pointwise limit of some se-
quence of continuous functions on A. A bounded Borel function f on a compact
set K that satisfies (1) will be called H-affine on K. All members of H(K) are
obviously H-affine on K.

THEOREM 1: Let K be a compact subset of R® and f: K — R. The following
statements are equivalent:
(a) there is a sequence (hy,) in H(K) such that h,, — f pointwise on K;
(b) there is an increasing sequence (K}) of compact sets with union K such
that, for each k,
(i) the restriction f|k, is bounded, Baire-one and H-affine on Ky, and
(ii) each bounded (connected) component of R*\ K}, intersects R"\ K.

Example 1: Let K be the closed unit ball in R* and (B;) be a sequence of
pairwise disjoint open balls of which the union V is a dense subset of K. Then
the characteristic function f valued 1 on V and 0 on K\V is not the pointwise
limit of any sequence in H(K). To see this, suppose otherwise. Then condition
(b) of Theorem 1 must hold. Let zo € K\V and U be an open set containing
zo. Then U contains Bj, for some jo. For any k it follows from (b)(i) and
consideration of normalized surface area measure on 0B, that B, ¢ K, and
then from (b)(ii) that

(R*\Kx) N (K\V)NU D (R"\K%) N 8B;, # 0.

Thus R*\ K}, is dense in K'\V for each k, and a Baire category argument then
yields the contradictory conclusion that (], (R*\K}) is dense in K\V. We note
that Luke$ et al. (see Lemma 3.2 in [12]) have established directly that this
particular function f is not the pointwise limit of any sequence in H(K).

The following observations related to Theorem 1 mainly involve the fine topol-
ogy of classical potential theory, namely the coarsest topology on R" that makes
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all superharmonic functions continuous (see Chapter 7 of [1] for an account of
its properties), and the associated notion of fine harmonicity (see Fuglede [8]).
Their justification may be found at the end of Section 3.

Remark 1: (i) If f: K — R is the pointwise limit of a sequence of functions in
H(K), then f must be finely harmonic on a finely open finely dense subset of
the fine interior of K.

(1) It follows that, if every Baire-one function f: K — R is the pointwise
limit of a sequence in H(K), then K has empty fine interior.

(iil) It is clear from Theorem 1 that the converse of (ii) is also true, but this
is an easy corollary of work of Deny [6] and Keldys [11].

(iv) The statement of Theorem 1 remains true if, instead, we take K to be an
open subset of R* and interpret #(K') as the collection of all harmonic functions
on K.

The background to our second main result is a classical theorem of Alice
Roth [13] (or see Chapter IV §5 of Gaier [11]) characterizing those functions on
the unit circle T' that can be expressed as z +— lim,_, o g(rz) for some entire
function g. She showed that these are precisely the Baire-one functions on T
that are constant on each component arc of some relatively open dense subset
of T. More recently, Boivin and Paramonov [4] have established (in particular)
an analogue of Roth’s result for entire harmonic functions in the plane: in this
case the radial limit functions are characterized as those Baire-one functions f
on T for which f(e') is a first degree polynomial of # on each component arc
of some relatively open dense subset of T'.

It is natural to look for a corresponding result in higher dimensions. Thus we
now consider harmonic functions h on R such that the limit

f(z) = lim h(rz)

T—00

exists for each z in the unit sphere S, and seek to characterize all such “radial
limit functions” f: § — R. Let § denote the Laplace-Beltrami operator on the
unit sphere S; thus the Laplacian on R" can be expressed in polar co-ordinates
» Ao # n-190 1

=372 + o + T—25.
Using an observation of Deny and Lelong concerning radial limits of bounded

harmonic functions in cones (p. 104 of [7]) and a Baire category argument, it
is straightforward to observe that such functions f must satisfy §f = 0 on a
relatively open dense subset of S. However, it will be seen below that, when
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n > 3, this property (together with f being Baire-one) is not sufficient to ensure
that f is the radial limit function of some entire harmonic function.

The characterization of radial limit functions of entire harmonic functions in
higher dimensions involves a suitable notion of affineness that we now introduce.
If J is a compact subset of S, and if u is a function on a relatively open subset I
of S such that J C I and du = 0 on I, then we write u € £(J). Given z € J we
write N, (J) for the collection of all £(J)-representing measures for z, that is,
probability measures p on J satisfying u(z) = [, udy for every u € £L(J), and
we define the notion of an L-affine function on J in the natural way (cf. (1)).

THEOREM 2: Let f: S — R. The following statements are equivalent:
(a) there is a harmonic function h on R™ such that h(rz) = f(z) asr = oo
for each z € S;
(b) there is an increasing sequence (Ji) of compact sets with union S such
that, for each k, the restriction f|;, is bounded, Baire-one and L-affine
on Jy.

Remark 2: (i) If n = 2 and condition (b) of Theorem 2 holds, it follows that
f(e®) must be a first degree polynomial of # on each component of a relatively
open dense subset of T. Thus Theorem 2 simplifies to the above-mentioned
result of Boivin and Paramonov in this case.

(ii) If n > 3 and there is an entire harmonic function h such that A(rz) — f(z)
as r — oo for each z € S, then f must be a é-fine solution of the Laplace—
Beltrami equation on a J-finely open d-finely dense subset of S. (By the §-fine
topology on S we mean the fine topology associated with the Laplace—Beltrami
operator 9.)

(iii) To see the essential role played by the fine topology when n > 3, we note
that there exist compact sets K C S that are nowhere dense in S yet have non-
empty d-fine interior. It follows from (ii) that, for such sets K, the (Baire-one)
function 'f ( Ve K

ry nr=I(x,...,Tn) €
fle) = {0 if « € S\K
is not the radial limit function of any entire harmonic function.

The proofs of Theorems 1 and 2, both of which rely on recent work of Lukes
et al. [12], will be given in Sections 3 and 4 following some preliminary material
that is assembled in the next section.

ACKNOWLEDGEMENT: We are grateful to Professor Ivan Netuka for helpful
comments on a preliminary draft of this paper. This work was supported by
EU Research Training Network Contract HPRN-CT-2000-00116.
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2. Preliminary results

For each y € R we define

_ [ -logllz -yl ifn=2,
() = {ux —ylP ifn >3,
If yo,y1 € R™, then by a path from yg to y; we mean a continuous function
g: [0,1] = R" such that g(0) = yo and g(1) = y1. Further, by a tract from yq
to 1 we mean a connected open set containing the image of such a path.

LeMMA A: Let K C R* be compact. If v € H(K) and ¢ > 0, then there exist
points yy,...,Ym in {z: 0 < dist(z, K') < ¢} and real numbers a;, ...,y such

that
m
v - Z QUy,

=1
LEMMA B: Let T be a tract from yo to y,. If ¢ > 0 and w is harmonic on
R™*\{yo}, then there exists a harmonic function w on R"\{y:} such that jw — u|
<eonR'\T.

<e¢ on K.

Both these lemmas are elementary. For Lemma A we refer to Lemma 2.6.1
of [1], or Lemma 1.8 of [10]. (It is clear from the proof that the points y; can
be chosen to be arbitrarily close to X.) Lemma B relies on the technique of
pole-pushing (see Section 1.6 of [10]; cf. Lemma 2.6.3 of [1]).

Let A C R* and G(-,-) denote the Green function of €2, where @ = R® if
n > 3, and (2 is some open set containing A and possessing a Green function if
n = 2 (thus we require that A # R? in this case). Given z € A we define u2
to be the sweeping of the Dirac measure £, at x onto 2\ A (see Section 9.1 of
[1]). Thus the potential Gu coincides with the regularized reduced function
Eg}fz), and p? # ¢, if and only if Q\A is thin at z.

THEOREM B: Let K C R* be compact and f be a bounded Borel function on
K. Then the function x ~ [ f duX is Borel and H-affine on K.

THEOREM C: Let K C R™ be compact and f: K -+ R be bounded and Baire-
one. If f is H-affine on K, then there is a bounded sequence (h,,) in C(K) such
that each h,, is H-affine on K and h,, — f pointwise on K.

Theorems B and C follow from abstract results of Lukes et al. dealing with
approximation in simplicial function spaces (see Corollary 6.2 and Theorem 6.3
in [12]), in view of work of Bliedtner and Hansen [3] concerning simpliciality
in potential theory. However, since the formulation of simpliciality in [12] is
superficially different from that in {3], some additional explanation is in order.
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Let H denote the collection of continuous functions on K that are finely
harmonic on the fine interior of K, and let M¥ denote the collection of all
probability measures p on K that satisfy [hdp = h(z) whenever h € H.
Further, let

W = {min{hy,...,hn} :m € Nand hy,...,hn € H},

K= {u € C(K): /udu < u(z) whenever z € K and p € M;{},

and let M* denote the collection of all probability measures p on K satisfying
Judp < u(z) whenever u € K. It is easy to see that

(2) M = My

since H C K. Theorem 11.3.3 and Corollary I1.3.8 of [3] together assert that, if
z € K, then X is the unique measure in M* that is minimal with respect to
the partial ordering given by

v < if and only if / wdy < / wdy  whenever w € W.

Further, we can appeal to Proposition 1.2.6 of [3] (with S = # and Sy = K) to
see that pX is also the unique measure in M that is minimal with respect to
the partial ordering given by

v < p if and only if / udv < / udy  whenever u € K.

Combining this with (2) we see that # is “simplicial” in the terminology of
Lukes et al. and, since M = M, (K) by the Debiard—-Gaveau result (Theorem
A), Theorems B and C now follow, as claimed, from the cited results in [12].

We note, for future reference, that the natural analogues of Theorems A-
C for L-affine functions on S also hold. One way of seeing this is to observe
that the Laplace-Beltrami operator § on S transforms, under the stereographic
projection to R*~!, to a partial differential operator that is covered by the
harmonic space context of [3]. (This paper also contains a general version of
Theorem A.) In fact, when n = 3, these analogues are implicitly included in
Theorems A-C since, in this case, solutions of du = 0 on domains in S map
to harmonic functions on domains in R? U {co} (and conversely) under the
stereographic projection. Similar reasoning shows, when n = 3, that S, endowed
with the d-fine topology, is homeomorphic to R? U {co}, endowed with the fine
topology of classical potential theory.
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3. Proof of Theorem 1
Suppose that condition (a) of Theorem 1 holds. For each k € N let

(3) Ky ={z € K : |hn(z)| <k for all m € N}.

Then each set K} is compact and (J, Kix = K. The restriction f|g, is clearly
bounded and Baire-one and, by dominated convergence, is H-affine on Kj.
Further, any bounded component U of R™\ K}, satisfies U C K and so must
intersect R*\K in view of the maximum principle. Hence condition (b) holds.

Conversely, suppose that condition (b) holds. For each & € N it follows from
condition (b)(i) and Theorem C that there is a sequence (u,m)m>1 in C(Kj)
such that each uy, ., is H-affine on K} and

4) Ug,m — f asm — oo, pointwise on K.

For each k,m € N we define

F _ Kl lfk=1
km = {2 € Ky, dist(z, Ky—1) > 1/m} ifk>2

and then put
m
Lp=|JFim (meN).
k=1
For each m € N we define
(5) Um(T) = ugm(z) (v € Fymik=1,...,m).

Thus v,, € C(Ln) and v, is H-affine on L,,, since the compact sets

Fim,...,Fnm are pairwise disjoint. Given m € N we apply first Theorem A
and then Lemma A to see that there exist points ym1,. .., Ym,,, € R*\Ly, and
real numbers am 1, ..., 0m, i, such that

im

Um — Z A, ily,, ;

i=1

(6)

<1/m on L.

We now construct a family of tracts as follows. Let
A={ymi:m>land 1<i<in}

Then ANK; =0, s0 A = (U, 4x) U Aso, where Ay = AN (Ki41\Kx) and
A = A\K. In applying Lemma A we can clearly arrange that the points yy, ;
are distinct, and that any limit points of A; belong to K. For each choice of
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k we can now inductively choose a countable collection of tracts {1 : z € Ay}
such that:

(I) T, is a tract from z to some point z' € R*\K such that R*\T, is

connected,

(I) T, C R*\ K}, (see condition (b)(ii)), and
(IIT) the sets T, (z € Ay) are pairwise disjoint.

For each choice of m, ¢ such that y,, ; € K we apply Lemma B to the function
Qm, illy,, ; to see that there exists a function wy, ;, harmonic on R" apart from
a singularity outside K, such that

1
|wm,i = Qm Uy, ,vl <— onR? \T
: M

LT

On the other hand, if ¥, ; € A, then we simply define wy, ; = am,iuy,, ; and
Ty... = 0. It follows from (6) that, if we define

im
W, = Zwm,i (m € N),
=1

then w,, € H(K) and

im
(7 [Vm — wm| <2/m on Lm\Uvai.

i=1

It remains to check that, for a given point zo € K, we have wn,(®0) = f(Zo)-

Let kg = min{k € N : 2o € K} and choose my > ko large enough so that
zo € Fiymo- Thus zo € Fiym C L, whenever m > mg. Properties (IT) and
(III) above of our family of tracts ensure that o can belong to at most one
member of {T} : ¢ € Ay} when 1 <k < kp — 1, and that zo does not lie in any
of the tracts Uy, {To : @ € Ax}. Thus 2o belongs to at most ko —1 of the
tracts {T; : z € A}, and so we can choose m; > mg large enough so that

l‘0¢ U UT'"-i'

m=my i=1

It follows from (7) that
[vm (%0) — wm(@o)| <2/m  (m 2 m),
and hence from (5) that

[tky,m(To) — Wm(Zo)| < 2/m (m >my).
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Thus w,, (2¢) = f(zo) in view of (4), as required.
This completes the proof of Theorem 1.

We conclude this section by justifying Remark 1. Firstly, suppose that
f: K = R is the pointwise limit of a sequence (h,,) in H(K') and define K}, as
in (3). Then, by Theorem 11.9 of [8], f is finely harmonic on the fine interior Vj
of K. Further, since R" endowed with the fine topology is a Baire space and
Ui K = K, the set |, Vi must be finely dense in the fine interior of K. This
justifies part (i) of Remark 1, and (ii) follows on considering, say, the function
f(z) = ||z||?. Next, suppose that K has empty fine interior. A classical result of
Deny [6] and Keldys [11] (or see Theorem 7.9.2 of [1], or Theorem 1.1 of [10]) as-
serts that any member of C(K)) is then the uniform limit of a sequence in H(K).
It follows immediately that any Baire-one function on K is the pointwise limit
of a sequence in H(K), as asserted in part (iii) of Remark 1.

Finally, as stated in (iv), the proof of Theorem 1 is readily modified to deal
with the case where K is, instead, an open subset of R*. To prove that (a)
implies (b) in this case, we choose (M};) to be an increasing sequence of compact
sets with union K such that each bounded component of R™\AM; intersects
R*\ K, and then replace (3) by

Ky = {z € My : |hm(z)| <k for all m € N}.

For the converse we define a path from a point yg € K to the Alexandroff point
A of K to be a continuous function g: [0,1) — K such that g(0) = yo and
g(t) = A as t = 1—, and then define a tract from y to A to be a connected
open subset of K containing the image of such a path. The argument now
proceeds as before, except that property (I) of the family of tracts constructed
should now read:

(I') T, is a tract from z to A and (K U {A})\T; is connected and locally
connected.
(We refer to Section 3.2 of [10] for a discussion of local connectedness in this
context.)

4. Proof of Theorem 2
Suppose that condition (a) of Theorem 2 holds, and let

Je={z€S:|h(rz)] <kforallr >1} (k€N).

Then each set Ji is compact and |J, Jy = S. We now fix k and dismiss the
trivial case where J, = S (whence h is constant). Clearly, the restriction f|;,
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is bounded and Baire-one. Let z belong to the 4-fine interior Vj, of J;. We note
that, for any supersolution v of the Laplace-Beltrami equation on a relatively
open subset V' of S, the function z — v(z/||z||) is superharmonic on the gener-
alized cone {x € R"\{0} : z/||z|| € V}. (This is clear for C? functions v, and
extends to the general case by a standard approximation argument.) Thus rz
belongs to the fine interior U} of the set

G = {z € R*"\{0} : z/||2[| € Ji}

for any r > 0. By Theorem 14.1 of [8] (concerning uniqueness for the fine
Dirichlet problem) and dilation,

h(rz) = /h(w)dugz" (z) = /h(ra:)d,uf" (®) (z€VW).

Letting » = oo we obtain

— T \1,Cr P :
10 = [ FEd @ et

Assuming temporarily that
z c J
® [ 1(m) @ = [ swavw),

where v denotes the obvious swept measure for the Laplace-Beltrami equation,
we see that

and so f is L-affine on Jj; in view of Theorem B. Thus condition (b) of Theorem
2 holds, subject to verification of the claim (8).

To check this, we note that (8) clearly holds when Ji is replaced by a reg-
ular relatively open subset W of S and Cy is replaced by the corresponding
generalized cone, and when f is replaced by a continuous function g on OW.
Further, if g is continuous on Ji, then we can uniformly approximate g on Ji
by the difference of two continuous é-potentials on some relatively open proper
subset of S containing Jj, and consider a decreasing sequence (W,,) of (regular)
relatively open subsets of S such that (), W, = Ji to deduce that (8) holds
with g in place of f. The claim now follows by dominated convergence, since f
is bounded and Baire-one.

Conversely, suppose that condition (b) holds. We may assume, without loss
of generality, that

9 J. C{z=(z1,...,2n) € S: 2, ¢ (-1/£,0)} (k€N).
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Next, let

wy ={rz:r>0,z€ 5 and z, > —1/2}
and

w-={rz:7r>0,2€ 5 and z, < 1/2},
and define
(10) a, =sup{H, 4 (z) : ¢ € wp NS},

where H), 4 is the harmonic measure of {z € wy : {jz|| = p or 1/p} in the domain
wy N{1/p < ||lz|| < p}. It is easy to see that

(11) a, >0 asp— 0.

We temporarily fix k& in N. By the L-affine version of Theorem C there is a
sequence (Uxm)m>1 in C(Jy) and a positive number ¢; such that each uy ., is
L-affine on Ji and ug,m — f pointwise on Ji, and such that

(12) [tg m| < e for all m.

Further, by the L-affine version of Theorem A, we may assume that each func-
tion ug,m satisfies duym = 0 on a neighbourhood of Tk,m, where Iy ., is a
relatively open subset of S such that

1
(13) chIk,mc{zeS:zn;é_ﬂ.}

(see (9)). We may also assume that the sequence (Ix,m)m>1 is decreasing. Now
let hy denote the (Perron-Wiener—Brelot) solution to the Dirichlet problem on
the open set

Wy = U {rz:z € Itms1 and ((m — DN* <r < ((m +1)1)*}
m>1

with boundary data

gu(z) = %f:‘jl(ﬂ) ({m = 1)1}*m? < ol < (ml)*(m + 1% m > 1)

We claim that

(14) hi(rz) > f(2) asr — oo for each z € Ji.
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To see this, let rqg > 8. Then there exists m > 2 such that either

(15) (m)*(m +1) < ro < (m)*(m +1)*
or
(16) ((m = 1))*m® <ro < (mh)*(m +1).

Suppose firstly that (15) holds. Then the functions z — wug(z/||z|])
(1 <1< m+ 1) are harmonic on a neighbourhood of Uy, where

Uy ={z€wy:ro/(m+1)<|z]| <ro(m+1)}.

We now apply the maximum principle on U as follows. We have

92 S () -

on
{£ € Quwy, : 1o/ (m +1) < ||z|| < (m)*(m + 1)},
and
m ;™ m
5; (||:vn>‘:‘m§““( )" Z (g n)‘
Smi—lck
on

{z € dwy, : (mN*(m + 1)2 < ||z|| < ro(m + 1)}
by (12). Further, using (12) again, we see that

1 « z
z) — E;ukl(mﬂ <2

on
{z € wy |zl =ro/(m +1) or ||z]| = ro(m + 1)}

In view of (13) we can use a dilation to compare the harmonic measure of the
above set in U; with H, 1. Hence, combining the above estimates with (10), we
see that

(17)

1
< 20k<m

1 m
hi(roz) — — Zuk,l(z) 11

=1

+am+1) (z € Jp).
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On the other hand, if (16) holds, then we can similarly apply the maximum
principle on
{z €wy : ro/m < ||z|| < rom}

to see that

(18) < 2ckam, (2 € Jy).

1 m
hi(roz) — - Zuk,l(z)
=1

Combining (17), (18) and (11), and noting that

1 m
" Zuk,l(z) = f(2) asm—o00 (z€J),
=1
we see that the claim (14} is established.
We next define the open sets

0 = {rz € wy : dist(z, 1) < &=} (k=1),
FT {rz € wy s dist(z, Ji) < 3= and dist(z, Ji_1) > =} (k> 2),

where z € S and r > 0, and the closed sets

B = {rz:zeJyandr>1} (k=1),
k= {rz:z € Jy,dist(z,Jx—1) > 1/rand r > k} (k> 2).

The sets )y are clearly pairwise disjoint, the set E = |J, Ej is closed, and
E., C §; for each k. We can therefore define a harmonic function v on a
neighbourhood of E by defining v = hg on Q for each k. Further, it is easy
to see that the set (R U {oo})\E is connected and locally connected. This
allows us to apply an approximation result of Armitage and Goldstein [2] (or
see Corollary 5.10 of [10]) to obtain the existence of an entire harmonic function
h such that
[v(z) — h(z)] <1/ll]l on E.

Now let z € S. We define ko = min{k : z € Ji.} and then

_J1 if ko =1,
"0 = {dist(z, Jo 1)}t if ko > 2.

For r > max{ro, ko} we thus have rz € Ej, and so
|£(z) = h(rz)] <|f(2) = v(rz)| + 1/r

=|f(2) = hio(r2)| + 1/r
=0 asr — oo,



256 S. J. GARDINER AND A. GUSTAFSSON Isr. J. Math.

in view of (14).
This completes the proof of Theorem 2.

Part (ii) of Remark 2 follows from Theorem 2, the £-affine version of Theorem
C and Theorem 11.9 of [8], in view of the fact that S, endowed with the é-fine
topology, is a Baire space. The other two parts are straightforward.
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