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ABSTRACT 

T h i s  paper  character izes  those  real-valued func t ions  on a compac t  set K 

in li¢n t ha t  can be expressed as the  pointwise l imit  of a sequence  (hm), 
where each funct ion  hm is h a r m o n i c  on some  ne ighbourhood  of  K .  It also 

character izes  those  func t ions  on the  un i t  sphere  t ha t  can arise as the  ra- 

dial l imit  funct ion  at  infini ty of  an  ent ire  h a r m o n i c  funct ion.  Bo th  resu l t s  

rely on i m p o r t a n t  recent  work of Luke~ et al. concerning  approx ima t ion  

of affine Baire-one funct ions.  

1. I n t r o d u c t i o n  

Let K be a compact set in Euclidean space l~ n (n > 2), and let 7-/(K) denote the 

collection of all functions that  are harmonic on a neighbourhood of K.  Further, 

given x E K,  let A/i~(K) denote the collection of all 7{(K)-representing measures 
for x, that  is, probability measures p on K satisfying 

h(x) = It( hd# for every h E 7-/(K). 

The following corollary of a well-known result of Debiard and Gaveau (Theorem 

1 of [5], formulated originally in terms of fine harmonicity) characterizes those 

functions on K that  are uniform limits of functions in 7/(K). 
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THEOREM A: Let K be a compact subset o fR '~ and f: K -+ ~. 

statements are equivalent: 
(a) 
(b) 

The following 

there is a sequence (hm) in 7-l(K) such that hm --4 f uniformly on K; 

f E C(K) and 

(1) f(x) = / fd# whenever x E K and # E Ms(K) .  

The first main result of this paper establishes an analogue of this theorem 

for pointwise convergence of harmonic functions. We recall that  a real-valued 

function f on a set A is called Ba i r e -one  if it is the pointwise limit of some se- 

quence of continuous functions on A. A bounded Borel function f on a compact 

set K that  satisfies (1) will be called H-aff ine on K.  All members of H(K) are 

obviously 7/-affine on K.  

THEOREM 1: Let K be a compact subset o f~  ~ and f: K -~ ~. The following 
statements are equivalent: 

(a) there is a sequence (hm) in H(K) such that hm -~ f pointwise on K; 
(b) there is an increasing sequence (Ka) of compact sets with union K such 

that, for each k, 

(i) the restriction fiK~ is bounded, BaJre-one and 7-/-afllne on Kk, and 
(ii) each bounded (connected) component of ~n \Ka intersects ~ \K .  

Example 1: Let K be the closed unit ball in ~n and (Bj) be a sequence of 

pairwise disjoint open balls of which the union V is a dense subset of K.  Then 

the characteristic function f valued 1 on V and 0 on K \ V  is not the pointwise 

limit of any sequence in 7-/(K). To see this, suppose otherwise. Then condition 

(b) of Theorem 1 must hold. Let x0 E K \ V  and U be an open set containing 

x0. Then U contains Bjo for some jo. For any k it follows from (b)(i) and 

consideration of normalized surface area measure on OBjo that  Bjo ~: Kk, and 

then from (b)(ii) that  

(ltn\Kk) N (K\V) N U ~_ (I~\Kk) N OBjo # O. 

Thus ~n\Kk is dense in K \ V  for each k, and a Baire category argument then 

yields the contradictory conclusion that  Nk ( II~ \Kk) is dense in K\V .  We note 

that  Luke~ et al. (see Lemma 3.2 in [12]) have established directly that  this 

particular function f is not the pointwise limit of any sequence in 7-/(K). 

The following observations related to Theorem 1 mainly involve the fine topol- 

ogy of classical potential theory, namely the coarsest topology on ~n that  makes 
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all superharmonic functions continuous (see Chapter 7 of [1] for an account of 

its properties), and the associated notion of fine harmonicity (see Fuglede [8]). 

Their justification may be found at the end of Section 3. 

Remark 1: (i) If f :  K -+ ~ is the pointwise limit of a sequence of functions in 

~-/(K), then f must be finely harmonic on a finely open finely dense subset of 

the fine interior of K.  

(ii) It follows that,  if every Baire-one function f :  K -+ 1~ is the pointwise 

limit of a sequence in 7/(K), then K has empty fine interior. 

(iii) It is clear from Theorem 1 that  the converse of (ii) is also true, but this 

is an easy corollary of work of Deny [6] and Keldy~ [11]. 

(iv) The statement of Theorem 1 remains true if, instead, we take K to be an 

open subset of I~ n and interpret 7/(K) as the collection of all harmonic functions 

on K.  

The background to our second main result is a classical theorem of Alice 

Roth [13] (or see Chapter IV,§5 of Gaier [11]) characterizing those functions on 

the unit circle T that  can be expressed as z ~ l i m r - ~  g(rz) for some entire 

function g. She showed that  these are precisely the Baire-one functions on T 

that  are constant on each component arc of some relatively open dense subset 

of T. More recently, Boivin and Paramonov [4] have established (in particular) 

an analogue of Roth's result for entire harmonic functions in the plane: in this 

case the radial limit functions are characterized as those Baire-one functions f 

on T for which f (e  i°) is a first degree polynomial of 8 on each component arc 

of some relatively open dense subset of T. 

It is natural to look for a corresponding result in higher dimensions. Thus we 

now consider harmonic functions h on II~ n such that  the limit 

f ( z )  = lim h(rz) 
r - ~  ~ 

exists for each z in the unit sphere S, and seek to characterize all such "radial 

limit functions" f :  S ~ ~ Let 5 denote the Laplace-Beltrami operator on the 

unit sphere S; thus the Laplacian on ]~n can be expressed in polar co-ordinates 

as 
__02 n - 1  0 1 5 

+ - -  + . 

r Or 

Using an observation of Deny and Lelong concerning radial limits of bounded 

harmonic functions in cones (p. 104 of [7]) and a Baire category argument, it 

is straightforward to observe that  such functions f must satisfy 5 f  = 0 on a 

relatively open dense subset of S. However, it will be seen below that,  when 
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n _> 3, this property (together with f being Baire-one) is not sufficient to ensure 

that  f is the radial limit function of some entire harmonic function. 

The characterization of radial limit functions of entire harmonic functions in 

higher dimensions involves a suitable notion of affineness that  we now introduce. 

If J is a compact subset of S, and if u is a function on a relatively open subset I 

of S such that  J C I and (iu = 0 on I,  then we write u E L:(J). Given z E J we 

write Afz(Y) for the collection of all L:(J)-representing measures for z, that  is, 

probability measures # on J satisfying u(z)  = f j  ud# for every u E L:(J), and 

we define the notion of an £-affine function on J in the natural way (cfl (1)). 

THEOREM 2: Let f:  S -+ I~. The following statements are equivalent: 

(a) there is a harmonic function h on ~n such that h(rz)  -+ f ( z )  as r --+ co 

for each z E S; 

(b) there is an increasing sequence (Jk) of compact sets with union S such 

that, for each k, the restriction f[j~ is bounded, Balre-one and £-afiine 

on Jk. 

Remark 2: (i) If n = 2 and condition (b) of Theorem 2 holds, it follows that  

f ( e  i°) must be a first degree polynomial of 0 on each component of a relatively 

open dense subset of T. Thus Theorem 2 simplifies to the above-mentioned 

result of Boivin and Paramonov in this case. 

(ii) If n > 3 and there is an entire harmonic function h such that  h(rz)  --+ f ( z )  

as r ~ oc for each z E S, then f must be a (i-fine solution of the Laplace- 

Beltrami equation on a (i-finely open (f-finely dense subset of S. (By the (i-fine 

topology on S we mean the fine topology associated with the Laplace-Beltrami 

operator (i.) 

(iii) To see the essential role played by the fine topology when n _> 3, we note 

that  there exist compact sets K C S that  are nowhere dense in S yet have non- 

empty (i-fine interior. It follows from (ii) that,  for such sets K,  the (Baire-one) 

function 
xl i f x  = ( x l , . . . , x n )  E K 

f ( x ) =  0 i f x E S \ K  

is not the radial limit function of any entire harmonic function. 

The proofs of Theorems 1 and 2, both of which rely on recent work of Luke~ 

et al. [12], will be given in Sections 3 and 4 following some preliminary material 

that  is assembled in the next section. 
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2. P r e l i m i n a r y  r e su l t s  

For each y E ~ we define 

] ' - l o g l l x - y l l  if n = 2 ,  
Uy(X) I l lx - yl l  i f  n >_ 3.  

If Y0, Yl E R n, then by a p a t h  from Y0 to Yl we mean a continuous function 

g: [0, 1] --+ R n such that  g(0) = Yo and g(1) = Yl. Further, by a t r a c t  from Y0 

to Yl we mean a connected open set containing the image of such a path. 

LEMMA A: Let K C ~n be compact. I f  v E ~ ( K )  and e > O, then there exist 

points Yl, . . .  ,Ym in {x : 0 < dist(x, K) < e} and real numbers a l , . . .  ,am such 

that 

V ~ OLi?~y i - < e  o n  K .  

i----1 
LEMMA 13: Let T be a tract from Yo to Yl. I f  c > 0 and u is harmonic on 

]~n\{yo}, then there exists a harmonic function w on I~n\{yl} such that ]w - u I 

< ~ on ~ \ T .  

Both these lemmas are elementary. For Lemma A we refer to Lemma 2.6.1 

of [1], or Lemma 1.8 of [10]. (It is clear from the proof that  the points y~ can 

be chosen to be arbitrarily close to K.) Lemma I3 relies on the technique of 

pole-pushing (see Section 1.6 of [10]; cf. Lemma 2.6.3 of [1]). 

Let A C ~n and G(., .) denote the Green function of fl, where fl = ]~n if 

n _> 3, and ~ is some open set containing A and possessing a Green function if 

n = 2 (thus we require that  A ~ ~2 in this case). Given x E A we define pA 

to be the sweeping of the Dirac measure cx at x onto ~ \ A  (see Section 9.1 of 

[1]). Thus the potential G# A coincides with the regularized reduced function 
~ \ A  A a(.,x), and #x ~ cx if and only if ~t\A is thin at x. 

THEOREM B: Let K C R n be compact and f be a bounded Bore1 function on 

K .  Then the function x ~ f f dp~" is Bore1 and H-afline on K .  

THEOREM C: Let K C ~n be compact and f :  K ~ ~ be bounded and Baire- 

one. I f  f is 7/-a/fine on K ,  then there is a bounded sequence (hm) in C ( K )  such 

that each hm is H-a/fine on K and hm ~ f pointwise on K .  

Theorems B and C follow from abstract results of Luke~ et al. dealing with 

approximation in simplicial function spaces (see Corollary 6.2 and Theorem 6.3 

in [12]), in view of work of Bliedtner and Hansen [3] concerning simpliciality 

in potential theory. However, since the formulation of simpliciality in [12] is 

superficially different from that  in [3], some additional explanation is in order. 
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Let 74 denote the collection of continuous functions on K that  are finely 

harmonic on the fine interior of K,  and let M~ n denote the collection of all 

probability measures tt on K that satisfy f hd# = h(x) whenever h E 7/. 

Further, let 

14; = { m i n { h l , . . . , h m } :  m E N and h l , . . . , h m  E 7-/}, 

]C={uEC(K):/ud#<u(x)wheneverxEKandpEM~},  

and let )Ply denote the collection of all probability measures # on K satisfying 

f ud# <_ u(x) whenever u E ]C. It is easy to see that 

(2) A//~ n = M y  

since 7-/C_/C. Theorem II.3.3 and Corollary II.3.8 of [3] together assert that, if 

x E K, then # ~  is the unique measure in M ~  that is minimal with respect to 

the partial ordering given by 

v-~# i fandonlyi f /wdv</wdt t  wheneverwE)4 ; .  

Further, we can appeal to Proposition 1.2.6 of [3] (with S = 7 / a n d  So = IC) to 

see that  #K is also the unique measure in M ~  that is minimal with respect to 

the partial ordering given by 

v-<# ifandonlyif /udv<_/ud# wheneveruEIC.  

Combining this with (2) we see that  74 is "simpliciar' in the terminology of 

Luke~ et al. and, since ./tdnz = .A4z(K) by the Debiard-Gaveau result (Theorem 

A), Theorems B and C now follow, as claimed, from the cited results in [12]. 

We note, for future reference, that  the natural analogues of Theorems A-  

C for £-affine functions on S also hold. One way of seeing this is to observe 

that  the Laplace-Beltrami operator 5 on S transforms, under the stereographic 

projection to ll~ n-1 , to a partial differential operator that  is covered by the 

harmonic space context of [3]. (This paper also contains a general version of 

Theorem A.) In fact, when n = 3, these analogues are implicitly included in 

Theorems A-C since, in this case, solutions of 5u = 0 on domains in S map 

to harmonic functions on domains in ~2 U {0o} (and conversely) under the 

stereographic projection. Similar reasoning shows, when n = 3, that  S, endowed 
with the (f-fine topology, is homeomorphic to R2 U {c~}, endowed with the fine 

topology of classical potential theory. 
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3. P r o o f  o f  T h e o r e m  1 

Suppose that  condition (a) of Theorem 1 holds. For each k E N let 

249 

(3) Kk = {x E K : Ihm(x)l _< k for all m E N}. 

Then each set Kk is compact and Uk Kk = K. The restriction flK~ is clearly 

bounded and Baire-one and, by dominated convergence, is 7-/-affine on Kk. 

Further, any bounded component U of R'~\Kk satisfies OU C Kk and so must 

intersect R n \ K  in view of the maximum principle. Hence condition (b) holds. 

Conversely, suppose that  condition (b) holds. For each k E N it follows from 

condition (b)(i) and Theorem C that  there is a sequence (Uk,m)m>_l in C(Kk) 

such that  each Uk,m is 7/-affine on Kk and 

(4) Uk,m ~ ] as m ~ oc, pointwise on Kk. 

For each k, m E N we define 

Fk,~ = {x E Kk : dist(x, Kk-1) _> 1/m} 

and then put 

For each m E N we define 

m 
L m =  UFk,m (mEN). 

k = l  

if k = l  
if k > 2  

(5) Vm(X) =Uk,m(X) ( x e F k , m ; k =  1 , . . . , m ) .  

Thus Vm E C(Lm) and Vm is 7/-affine on Lm, since the compact sets 

Fl,m . . . .  ,Fm,m are pairwise disjoint. Given m E N we apply first Theorem A 

and then Lemma A to see that  there exist points Ym,1,..., Ym,i,, E ]~n \Lm and 

real numbers a m , I , . . . ,  am,ira such that  

Vm ~m I (6) - E am,iUY", i < 1/m on Lm. 
i=1 

We now construct a family of tracts as follows. Let 

A = {Ym,~ : m > 1 and 1 < i < im}. 

Then A n K1 -- 0, so A = (Uk Ak)U A~o, where Ak = A N (Kk+I\K}) and 
Aoo = A\K.  In applying Lemma A we can clearly arrange that  the points Ym,i 
are distinct, and that  any limit points of Aa belong to Kk. For each choice of 
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k we can now inductively choose a countable collection of tracts {Tx : x E Ak } 

such that: 

(I) Tx is a tract  from x to some point x' E R n \ K  such that  Rn\Tx is 

connected, 

(II) Tx C ]~n\Kk (see condition (b)(ii)), and 

(III) the sets Tx (x E Ak) are pairwise disjoint. 

For each choice of m, i such that  Ym,i E K we apply Lemma B to the function 

Olm,iUym, i to see that  there exists a function win#, harmonic on I~ n apart from 

a singularity outside K,  such that  

1 
Iw,~# - ~m,~u~,.,..,I < m i ~  on ~"  \Ty..,,,. 

On the other hand, if Ym,i E A~ ,  then we simply define win# = c~,~,iuy,,,,~ and 

Tyro., = 0. It follows from (6) that,  if we define 

then Wm E 7-/(K) and 

im 

Wm : ~ W m , i  ( m E N ) ,  
i =1  

ira 

(7) Ivm - w~l < 2/m or, .L,,,\ U T~,,,,. 
i =1  

It remains to check that,  for a given point Xo E K,  we have Wm(Xo) --+ f(xo). 
Let k0 = min{k E N : Xo E Kk} and choose mo _> ko large enough so that  

xo E Fko,mo. Thus x0 E Fko,m C_ Lm whenever m > m0. Properties (II) and 

(III) above of our family of tracts ensure that  x0 can belong to at most one 

member of {T~ : x E Ak} when 1 < k < ko - 1, and that  x0 does not lie in any 

of the tracts Uk>_ko{Tx : x E Ak}. Thus x0 belongs to at most ko - 1 of the 

tracts {Tx : x E A}, and so we can choose ml > m0 large enough so that  

O0 im 

xo, U 
m=ml i=l 

It follows from (7) that  

Ivm(xo) - ~ .~(x0) l  < 2 / m  (m _ m , ) ,  

and hence from (5) that  

lUko,m(XO) -- Wm(Xo)l <~ 2 / m  (m ~> m l ) .  
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Thus Wm(Xo) --+ f(Xo) in view of (4), as required. 

This completes the proof of Theorem 1. 

We conclude this section by justifying Remark 1. Firstly, suppose that  

f :  K ~ I~ is the pointwise limit of a sequence (hm) in 7-/(K) and define Kk as 

in (3). Then, by Theorem 11.9 of [8], f is finely harmonic on the fine interior Vk 

of Kk. Further, since ~n endowed with the fine topology is a Baire space and 

Uk Kk = K,  the set Uk Vk must be finely dense in the fine interior of K.  This 

justifies part (i) of Remark 1, and (ii) follows on considering, say, the function 

](x) = Ilxll 2. Next, suppose that  K has empty fine interior. A classical result of 

Deny [6] and Keldy~ [11] (or see Theorem 7.9.2 of [1], or Theorem 1.1 of [10]) as- 

serts that  any member of C(K) is then the uniform limit of a sequence in 7-/(K). 

It follows immediately that  any Baire-one function on K is the pointwise limit 

of a sequence in 7-/(K), as asserted in part (iii) of Remark 1. 

Finally, as stated in (iv), the proof of Theorem 1 is readily modified to deal 

with the case where K is, instead, an open subset of ~n. To prove that  (a) 

implies (b) in this case, we choose (Mk) to be an increasing sequence of compact 

sets with union K such that  each bounded component of ~n\Mk intersects 

I~ n \ K ,  and then replace (3) by 

= {x • Mk: Ihm(x)l < k for all • N}. 

For the converse we define a p a t h  from a point Y0 • K to the Alexandroff point 

A of K to be a continuous function g: [0, 1) ~ K such that  g(0) = Y0 and 

g(t) ~ A as t -+ 1 - ,  and then define a t r a c t  from Yo to .A to be a connected 

open subset of K containing the image of such a path. The argument now 

proceeds as before, except that  property (I) of the family of tracts constructed 

should now read: 

(I') Tz is a tract from x to .4 and (K U {A})\Tz is connected and locally 

connected. 

(We refer to Section 3.2 of [10] for a discussion of local connectedness in this 

context.) 

4. P r o o f  o f  T h e o r e m  2 

Suppose that  condition (a) of Theorem 2 holds, and let 

Jk = {z e S : lh(rz)I <_ k for all r > l} ( k • N ) .  

Then each set Jk is compact and Uk Jk = S. We now fix k and dismiss the 

trivial case where Jk = S (whence h is constant). Clearly, the restriction fIJk 
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is bounded and Baire-one. Let z belong to the 5-fine interior Vk of Jk. We note 

that, for any supersolution v of the Laplace-Beltrami equation on a relatively 

open subset V of S, the function x ~ v(x/llxll) is superharmonic on the gener- 

alized cone {x E Rn\{0} : x/llxll E V}. (This is clear for C 2 functions v, and 

extends to the general case by a standard approximation argument.) Thus rz 
belongs to the fine interior Uk of the set 

ck = {x e : x/llxll e Jk} 

for any r > 0. By Theorem 14.1 of [8] (concerning uniqueness for the fine 

Dirichlet problem) and dilation, 

Letting r ~ oc we obtain 

/ x d c~ x Vk). f(z) = f(]V~) ]~z ( ) ( z e  

Assuming temporarily that 

f f \~-V~ x ~ d#C~z f (8) (x) = j f(y)&/g" (y), 

where Vz A denotes the obvious swept measure for the Laplace-Beltrami equation, 

we see that 

= J Idol  
/ *  

:(z) 

and so f is/:-affine on Jk in view of Theorem B. Thus condition (b) of Theorem 

2 holds, subject to verification of the claim (8). 

To check this, we note that (8) clearly holds when Jk is replaced by a reg- 

ular relatively open subset W of S and Ck is replaced by the corresponding 

generalized cone, and when f is replaced by a continuous function g on OW. 
Further, if g is continuous on Jk, then we can uniformly approximate g on Jk 
by the difference of two continuous 5-potentials on some relatively open proper 

subset of S containing Jk and consider a decreasing sequence (W,~) of (regular) 

relatively open subsets of S such that Nm Wm = Jk to deduce that (8) holds 

with g in place of f .  The claim now follows by dominated convergence, since f 

is bounded and Baire-one. 
Conversely, suppose that condition (b) holds. We may assume, without loss 

of generality, that 

(9) Jk C_ {z = (z l , . . . , zn)  e S:  zn • ( - I / k , 0 )}  (k E N). 
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Next, let 

and 

and define 

¢z+ = {rz : r > 0, z E S and zn > - 1 / 2 }  

w_ = {rz : r > O, z E S and zn < l /2} ,  

(10) ap = sup{Hp,+(x): x E w+ NS}, 

where Hp,+ is the harmonic measure of {x E w+ : tixiI = p or l / p }  in the domain 

w+ M { l iP  < Iixl] < p}. It is easy to see that  

(11) ap--~O as p -+ co. 

We temporarily fix k in 51. By the £-affine version of Theorem C there is a 

sequence (Uk,m)m>l in C(Jk) and a positive number Ck such that  each Uk,m is 

£-affine on Jk and Uk,m --+ f pointwise on Jk, and such that  

(12) lUk,ml <_ Ck for all m. 

Further, by the £-affine version of Theorem A, we may assume that  each func- 

tion Uk,m satisfies 5uk,m = 0 on a neighbourhood of Ik,m, where Ik,m is a 

relatively open subset of S such that  

(13) Jk C Ik,m C {z  E S : zn ~ -~ '~}  

(see (9)). We may also assume that  the sequence (Ik,m)m>_l is decreasing. Now 

let hk denote the (Perron-Wiener-Brelot) solution to the Dirichlet problem on 
the open set 

Wk ---- U {/ 'Z: Z ~. Ik,m+l and ((m - 1)!) 4 < r < ((m + 1)!) 4} 
m>l 

with boundary data 

gk(x) = ~ ~ Uk,~ ~ ({(m -- 1)!)% 2 _< Ilxll < (m!)a(m + 1)2; m _> 1). 
l-----1 

We claim that  

(14) hk(rz) --+ ](z)  as r -+ c~ for each z E Jk. 
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To see this, let r0 > 8. Then there exists m _> 2 such that either 

(15) (m!)4(m + 1) < ro _< (m!)4(m + 1) a 

o r  

(16) ((m - 1)!)4m 3 < r0 < (m!)4(m + 1). 

Suppose firstly that  (15) holds. Then the functions x ~ Uk,l(x/llxll ) 
(1 < l < m + 1) are harmonic on a neighbourhood of U1, where 

U1 = {x • Wk : ro/(m + 1) < Ilxll < ro(m + 1)}. 

We now apply the maximum principle on Ux as follows. We have 

l m  ( )  x 
9~(x) - ~ ~ u~,~ ~ = o 

/=1 

o n  

and 

{x e owk : ro/(m + 1) < Ilxlt < (m!)4( m + 1)2}, 

o n  

gk (x ) 1~--~ ( ]_~_~ 1 ~+1 ( ]-(-~] 1~-~ (_V_~ ) I x  
- -  ~tk'l ~ l-~l /=1 ?/t l : l  

2 
< - - C k  
- - m + l  

{X E OWk : (m!)4(ra + 1) 2 < Ilxll < ro(m + 1)} 

by (12). Further, using (12) again, we see that 

if: (x)l 
- - -  Uk,Z ~ <_ 2Ck 

m l~l 

o n  

{x E Wk : llXll = ro/(m + 1) or IIx]l = ro(m + 1)}. 

In view of (13) we can use a dilation to compare the harmonic measure of the 

above set in U1 with Hp,+. Hence, combining the above estimates with (10), we 

see that  

hk(roz) 1 m Uk,l(Z) ( m ~  (17) - ~ Z  <2~ +a,~+1) (ze J~). 
l = l  
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On the other hand, if (16) holds, then we can similarly apply the maximum 

principle on 

{x • : ro/m < Ilxll < rom} 

to see that  

(18) hk(roz)- ml "~ Uk,l(Z) < 2Ckam 

Combining (17), (18) and (11), and noting that  

1 m 
m E Uk,l(z) --+ f(z) a s m ~ c ~  

1=1 

we see that  the claim (14) is established. 

We next define the open sets 

(z • &). 

( z •  &), 

{{rz  e co1: dist(z, J1) < ~ }  (k = 1), 
f~k= {rz •wk  dist(z, J k ) <  ~Tand d i s t ( z , A _ l ) >  ~ )  (k_>2), 

where z • S and r > 0, and the closed sets 

( r z : z E J l a n d r > _ l }  ( k = l ) ,  
Ek = {rz z •  Jk,dist(z, Jk-1) >_ l /r  and r _> k} (k_>2). 

The sets 12k are clearly pairwise disjoint, the set E = Uk Ek is closed, and 

Ek C f~k for each k. We can therefore define a harmonic function v on a 

neighbourhood of E by defining v = hk on ~tk for each k. Darther, it is easy 

to see that  the set (JR n U {oo})\E is connected and locally connected. This 

allows us to apply an approximation result of Armitage and Goldstein [2] (or 

see Corollary 5.10 of [10]) to obtain the existence of an entire harmonic function 

h such that  

Iv(x) - h(x)l < 1/llxll on E. 

Now let z • S. We define k0 = min{k : z • Jk} and then 

1 if ko = 1, 
ro = {dist(z, Jko_l)} -1 if k0 > 2. 

For r _> max{to, k0 } we thus have rz • Eko and so 

If(z) - h(rz)I <_ If(z) - v(rz)[ + 1/r 

= If(z) - hko(rZ)] + 1/r 
- + 0  as r --+ oo, 
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in view of (14). 

This completes the proof of Theorem 2. 

Part  (ii) of Remark 2 follows from Theorem 2, the/:-affine version of Theorem 

C and Theorem 11.9 of [8], in view of the fact that  S, endowed with the 5-fine 

topology, is a Baire space. The other two parts are straightforward. 
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